Volume 29

Number 12

June 13, 1990

Inorganic Chemistry

0 Copyright 1990 by the American Chemical Society

Communications

Models for Reduced Blue Copper Sites: Nearly Novel N₂(imidazole)S^{*}₂(thioether) Ligand¹ Tetrahedral Complexes of Copper(I) and Silver(I) with a

We report here the characterization of a novel, nearly tetrahedral $Cu^{1}N_{2}S^{*}$ complex with imidazole *(N)* and thioether (S^{*}) ligation. Such Cu(I1) models can be used to identify the differential contributions of ligand types on the electronic structure² and electron-transfer reactivity^{3,4} of *reduced* blue copper protein active sites. For example, we recently synthesized a nearly isostructural, pseudotetrahedral (D_{2d}) pair of Cu^I/Cu^{II}N₄ complexes using the geometrically constraining ligand 1 (see Scheme I);⁵ electron self-exchange in this pair is remarkably slow.⁶ We have now elaborated 1 into the linear, tetradentate N₂S^{*}₂ donor 4, and have characterized its complexes with Cu(I), $Cu(I\tilde{I})$, and Ag(I), including crystal structures of the Cu(1) and **Ag(1)** species. While other Cu(I) systems with N_2S^* ligation have been structurally characterized,⁷ the N donors had different hybridization and/or basicities than imidazole and presumably are less relevant as biological models.

Protection of 1 as its N,N'-(SEM)₂ derivative^{8,9} [SEM = (24 trimethylsilyl)ethoxy)methyl] allowed double ortho-metalation,8-12 leading to a dilithio species formulated as **2.** Double sulfenylation8-10 of **2** with the disulfide **3,** followed by deprotecti0n,89~ led to **4** in **73%** overall yield from **1.** The disulfide **3** was prepared from 2-(tert-butyIthio)ethanol¹³ by a short sequence in

- (I) Presented at the 23rd ACS Middle Atlantic Regional Meeting, Cherry Hill, NJ, May **25, 1989;** INORG **99.**
- **(2)** ., Didziulis. **S.** V.: Cohen. S. L.: Butcher. K. D.: Solomon. E. **I.** *fnorz.* ., *Chem.* **1988,** *27,* **2238.**
-
- (3) Guss, J. M.; Freeman, H. C. J. *Mol. Biol.* 1983, 169, 521.
(4) Guss, J. M.; Harrowell, P. R.; Murata, M.; Norris, V. A.; Freeman, H.
C. J. *Mol. Biol.* 1986, 192, 361.
- **(5)** Knapp, S.; Keenan, T. P.; Zhang, X.; Fikar, R.; Potenza, J. A.; Schugar, H. J. *J. Am. Chem.* **SOC. 1987.** *109.* **1882.**
- **(6)** Knapp, S.; Keenan, T. P.; Zhang, X.;'Fikar, R.; Potenza, J. A.; Schugar, H. J. *J. Am. Chem. Soc.* **1990,** *112,* **3452.**
- (7) (a) Brubaker, G. R.; Brown, J. E.; Yoo, M. K.; Kinsey, R. A.; Kutchan, T. M.; Mottel, E. A. Inorg. Chem. 1979, 18, 299. (b) Karlin, K. D.; Dahlstrom, P. L.; Stanford, M. L.; Zubieta, J. J. Chem. Soc., Chem. *Commun.* **1979,** *465.* (c) Karlin, K. D.; Dahlstrom, P. L.; Hyde, J. R.; Zubieta, J. *J. Chem. Soc., Chem. Commun.* **1980,906.** (d) Karlin, K. D.; Hyde, J. R.; Zubieta, J. *Inorg. Chim. Acta* 1982, 66, L23. (e)
Karlin, K. D.; Hayes, J. C.; Hutchinson, J. P.; Zubieta, J. *Inorg. Chim.
Acta* 1983, 78, L45. (f) Martin, J. W. L.; Organ, G. J.; Wainwright,
K. P.; Weer **1987,** *26,* **2963.**
- **(8)** Lipshutz, B. H.; Vaccaro, W.; Huff, B. *Tetruhedron Left.* **1986,** *27,* **4095.**
- **(9)** Whitten, J. P.; Matthews, D. P.; McCarthy, J. R. *J. Org. Chem.* **1986,** *51,* **1891.**
- **(IO)** Iddon, B. *Heterocycles* **1985,** *23,* **417.**
- (I I) Edwards, M. P.; Doherty, A. M.; Ley, S. V.; Organ, H. M. *Terruhedron* **1986,** *42,* **3723. (12)** Tolman, W. B.; Rardin. R. L.; Lippard, S. **J.** *J. Am. Chem. SOC.* **1989,**
- *I I I.* **4532.**
- **(13)** Hurd, C. D.; Wilkinson, **K.** *J. Am. Chem. SOC.* **1949,** *71,* **3429.**

^a Distances are in angstroms; angles are in degrees.

66% overall yield: (a) $CH₃SO₂Cl$, $Et₃N$, $CH₂Cl₂$; (b) KSAc, EtOH; (c) NaOMe, MeOH, I₂. In the same fashion, reaction of **2** with dimethyl disulfide, followed by deprotection, gave the reference N₂ ligand 2,2'-bis(4-(methylthio)-2-imidazolyl)biphenyl **(5).** Complexes of 4 were prepared by treatment with 1.0 equiv of the $M(I)$ salts in deoxygenated acetonitrile $[Cu(I)]$ or methanol **[Ag(I)].** Following evaporation, the colorless copper(1) tetrafluoroborate and silver(1) trifluoroacetate complexes were crystallized from acetone by slow vapor diffusion of ether. Full experimental details are given as supplementary material.

X-ray analysis revealed¹⁴ that the $Cu(I)$ complex is an acetone solvate with two structurally similar, crystallographically distinct Cu'(4) cations, each with point symmetry **2.** The Ag'(4) cations show no crystallographic symmetry. Each cation has a distorted

0020-1669/90/1329-2189\$02.50/0 © 1990 American Chemical Society

⁽¹⁴⁾ Crystallography for Cu(4)BF₄·(CH₃)₂CO, CuS₄F₄ON₄C₃₃BH₄₄: orthorhombic, *Pbcn*, $a = 20.400$ (2) Å, $b = 18.360$ (2) Å, $c = 20.395$ (3) Å, $Z = 8$; $d_{\text{obs}} = 1.37$ (1) g/cm^3 , $d_{\text{col}}d = 1.376$ g/cm^3 . Th SDP program package and refined to give $R_{F(wF)} = 0.057 (0.073)$ and a goodness of fit of 2.30. Despite the near equivalence of the *a* and *c* cell edges, the Laue group clearly indicated an orthorhombic space group, and solution of the structure revealed no evidence of twinning. Crystallography for Ag(4)O₂CCF₃, AgS₄F₃O₂N₄C₃₂H₃₈: monoclinic, $P2_1/n$, $a = 10.428$ (1) A, $b = 23.145$ (5) A, $c = 15.517$ (3) A, $\beta = 99.71$ (1)⁶, $Z = 4$; $d_{\text{obsd}} = 1.44$ (1) g/cm^3 , $d_{\text{cald}} = 1.446$ g/cm³, 3482 re-
flections $(F_0^2 > 3\sigma(F_0^2))$, $R_{F(w)} = 0.052$ (0.070), and GOF = 2.32. The
tetrafluoroborate anion in the Cu system showed high thermal param eters, and the trifluoroacetate anion in the Ag complex exhibited **ps**itional disorder, resulting in higher than normal *R* factors.

Scheme I^o

'(a) SwcI, KH, THF, HMPA, **O'C, 85%; (b) LDA,** THF, **-78'C;** (c) **disulfide 3,** THF, *88%;* **(d) aq** HF, **MeOH, rellux,** 98%; **(e) MeSSMe,** THF, *88%.*

tetrahedral coordination geometry as judged by the simple (A-M-B) and dihedral (A-M-B/C-M-D) angles (Table **I),** which show relatively modest deviations (ca. $\pm 10^{\circ}$) from the tetrahedral values (109.5 and 90 $^{\circ}$, respectively). For the Cu(I) cations, deviations of the $A-Cu-B$ angles from 109.5 \degree are substantially smaller than those reported for the related $Cu^{1}N_{2}S_{2}^{*}$ complexes.⁷ The Cu-S(thioether) bond lengths are relatively long; they lie outside the range [2.211 (1)-2.345 (I) **A]** determined' for the related complexes, yet are substantially shorter than those obpH range. Metal-ligand bond lengths in the Ag complex are ca. 0.24 **A** longer than those in the Cu complex, while the N-Ag-N' angle is smaller, consistent with the larger size of the **Ag** ion.15 The seven-membered chelate rings adopt a variety of conformations in the solid state as judged by the SCCS torsion angles, which vary from 0 (2) (eclipsed) to 51.7 (7)^o (gauche) (Table I). Thermal parameters of the carbon atoms of the ethano bridges (cross-hatched atoms in Figure 1) are relatively large compared with those of the remaining ligand atoms, consistent with some conformational flexibility and/or disorder in the solid state. Proton NMR spectra at 400 MHz¹⁶ show broadened, overlapping four-spin patterns for the ethano bridge protons in the sevenmembered chelate rings. These shift and sharpen at higher served⁴ (2.51-2.90 Å) for reduced plastocyanin over the $3.8-7.8$

Figure 1. View of one of the two similar cations in $\text{Cu}^{1}(4)BF_{4}(CH_{3})$, CO. Ethano bridge C atoms are indicated by crosshatching. H atoms have been omitted for clarity.

temperatures, implying analogous conformational flexibility in solution.

Equimolar solutions of $Cu(II)$ salts with 4 or 5 afforded crystals that analyzed as Cu(4)₂ or Cu(5)₂ complexes.¹⁷ Cu(4)₂(CF₃SO₃)₂ exhibits axial EPR spectra at 80 K both as a neat solid $(g_{\parallel} = 2.23,$ $g_{\perp} = 2.02$, $A_{\parallel}^{Cu} = 142 \times 10^{-4}$ cm⁻¹) and glassed in acetone (3.5) mM, $g_{\parallel} = 2.26$, $g_{\perp} = 2.03$, $A_{\parallel}^{Cu} = 142 \times 10^{-4}$) that closely resemble those reported for the $CuN₄$ imidazole complex Cu^H - $(1)_2$ (ClO₄)₂ (5.0 mM, CH₃CN, 80 K, $g_1 = 2.25$, $g_1 = 2.02$, A_1^{Cu} $= 147 \times 10^{-4}$ cm⁻¹),^{5,6} and the N₄ model complex $\tilde{Cu}^{II}(5)_2(CIO_4)_2$ $(6.4 \text{ mM}, 80 \text{K}, \text{CH}_3 \text{CN}, g_{\parallel} = 2.25, g_{\perp} = 2.03, A_{\parallel}^{\text{Cu}} = 137 \times$ 10^{-4}), suggesting that $Cu(II)$ preferentially forms an N_4 complex *(one Cu to two ligands) and that the thioether arms of 4do not ligate Cu(l1) strongly.* This is also supported by the electronic spectrum of $Cu^{II}(4)_{2}(CF_{3}SO_{3})_{2}$ (1.7 mM, ethanol) which includes LF absorptions at 820 **(c** ca. 80) and 665 nm (155), and a band spectrum of Cu¹¹(4)₂(CF₃SO₃)₂ (1.7 mM, ethanol) which includes
LF absorptions at 820 (ϵ ca. 80) and 665 nm (155), and a band
at 475 nm (195) which we assign as π (imH) \rightarrow Cu(II) LMCT. Similarly, $Cu(1)_{2}(ClO_{4})_{2}$ shows bands at 800 (120), 650 (260), and 440 (260)^{5,6} while $\tilde{Cu}^{II}(5)_2$ (ClO₄)₂ shows absorptions at 660 (225) and 480 (245) nm. Imidazole ring sulfenylation in 4 and *5* may account for the LMCT band red-shift of 35-40 nm relative to the copper(I1) complex of **l.l8 In** the copper complexes, the ultraviolet spectral region is obscured by strong absorptions of the ligand 4, the longest wavelength of which is approximately 275 nm $(\epsilon = 19800)$. Consequently, the higher energy LMCT of the Cu^{II}(4)₂ complex and the MLCT of the Cu^I(4) complex could not be located.

In summary, 4 provides a distorted tetrahedral $N_2S_2^*$ coordination sphere for $Cu(I)$ and $Ag(I)$; its complex with $Cu(I)$ is a useful model for pseudotetrahedral binding sites. Efforts to prepare copper complexes of the monomercaptan corresponding to **4** are currently underway.

⁽¹⁵⁾ Van Stein, **G.** C.; Van Koten, G.; Spek, **A.** L.; Duisenberg, A. J. M.;

Klop, E. A. Inorg. Chim. Acta 1983, 78, L61.
(16) The 400-MHz¹H NMR spectra of 4 and its complexes with AgO₂CCF₃
and CuBF₄ were examined in CD₃OD from -80 to +50 °C. Upon
complexation at 50 °C, the imH ring prot complexation at 50 °C, the imH ring proton (H-4) moves downfield by 0.27 and 0.21 ppm, respectively, and the *tert*-butyl singlet moves upfield by 0.08 and 0.09 ppm, respectively, compared with free 4. At -80 °C, the *tert*-butyl peak of the Ag (Cu) complex moves another 0.06 (0.06) ppm upfield and the imidazole singlet another **0.21 (0.16)** ppm down-field, suggesting tighter complexation at the lower temperature. Neither complex shows any free **4** by 'H NMR. In the presence of excess **4,** the Ag and Cu complexes each show two distinct species at -60 °C (free and bound **4).** the tert-butyl singlets of which coalesce at about **+20** "C, indicating rapid ligand exchange at the higher temperature. Whereas the phenylene protons of **4** and its complexes are well resolved and relatively unchanging, the protons of the ethano bridges broaden and shift over the temperature range studied. Best resolved is the spectrum
for the Ag complex at 50 °C, whose four signals show $J_{\text{gem}} = 12.5$ and
13.4 Hz, and $J_{\text{vic}} = 3.8$, 4.6, 5.7, and 9.5 Hz.

 (17) Anal. Calcd for Cu¹¹(4)₂,2OTf, C₆₂H₇₆CuF₆N₈O₆S₁₀: C, 48.75; H,
5.02; Cu, 4.16; N, 7.34; S, 20.99. Found: C, 48.49; H, 4.95; Cu, 3.98;
N, 7.23; S, 21.16. Anal. Calcd for Cu¹¹(5)₂(ClO₄)₂, C₄₀H₃₆Cl₂CuN₈O₈S₄: C, 47.13; H, 3.56; Cu, 6.23; N, 10.99; S, 12.58.
Found: C, 47.35; H, 3.80; Cu, 6.10; N, 10.49; S, 12.34.
Alkylation of the imH C atoms is known to red-shift imH → Cu(II)
LMVlation of the im

Alkylation of the imH C atoms is known to red-shift imH \rightarrow Cu(II) LMCT absorptions: Bernarducci, E.; Bharadwaj, P. K.; Krogh-Jespersen, **K.;** Potenza. J. A.; Schugar, H. J. *J. Am.* Chem. *SOC.* **1983.** *105.* **3860.**

Acknowledgment. This research was supported by the NSF (Grant CHE-8417548), the David and Johanna Busch Foundation, and the NIH (Instrumentation Grant 1510 **RRO** 1486 **OIA).**

Supplementary Material Available: Full details **for** the synthesis of 4, **5,** and their complexes, tables of crystal and refinement data, positional and thermal parameters, and bond distances and angles, and figures depicting the structures and numbering schemes of $Ag(4)^+$ and the two cations of $Cu(4)^{+}$ (27 pages); tables of observed and calculated structure factors for $Cu(4)BF_4(CH_3)_2CO$ and $Ag(4)O_2CCF_3$ (33 pages). Ordering information is given on any current masthead page.

Department of Chemistry Spencer Knapp* Rutgers, The State University Spencer Rnapp* Rutgers, The State University **Rutgers, The State University** of New Jersey **Jiangnan** Liu New Brunswick, New Jersey 08903

Harvey J. Schugar*

Received December *I* I, *I989*

Figure 1. Three units of one of the spiral polymeric chains of [closo-1,1,1- $(MeCN)_{3}$ -1,2,4-SrC₂B₁₀H₁₂]_n (2).

Preparation and Characterization of *[closo* - **l,l,l-(MeCN)3-l,2,4-SrC,B,oH12],: The First Structural Characterization of a Polymeric Self- Assembling Metallacarborane**

There has been considerable current research interest in the organometallic chemistry of alkaline-earth metals.¹⁻¹¹ In particular, the beautiful cyclopentadienyl chemistry of these metals has shown novel structural arrangements.¹⁻⁷ We have recently reported the solid state structure of the first calcium carborane,¹² closo-1,1,1,1-(MeCN)₄-1,2,4-CaC₂B₁₀H₁₂, in which the Ca- $(MeCN)₄²⁺$ unit caps the open hexagonal face of the [nido-7,9- $C_2B_{10}H_{12}$ ²⁻ ligand. In this communication, we report the synthesis and characterization of a strontium carborane, [closo-1,1,1- $(MeCN)₃$ -1,2,4-SrC₂B₁₀H₁₂]_n, which has been shown by X-ray diffraction to possess a novel polymeric structure. To our knowledge, it represents the first structurally characterized example of a polymeric metallacarborane.

The reaction of Srl_2 with $\text{Na}_2[nido-7,9-C_2B_{10}H_{12}]^{13}$ in THF affords a colorless complex **(I),** which precipitates from THF. Complex **1** is soluble in other coordinating solvents such as MeCN or DMF. Recrystallization of complex 1 from MeCN/Et₂O

(I) Zerger, R.; Stucky, G. *J.* Organomer. Chem. **1974,** 80, 7.

- (2) Andersen, R. A.; Boncella, J. M.; **Burns,** C. J.; Blom, R.; Haaland, A,; Volden, H. V. J. Organomer. Chem. **1986,** *312,* C49.
- (3) Andersen, R. **A.;** Blom, R.; Boncella, J. M.; Burns, C. J.; Volden, H. V. Acta Chem. Scand., Ser. A **1987,** A41, 24.
- (4) Hanusa, T. P.; Williams, R. A,; Huffman, J. C. *J.* Chem. *Soc.,* Chem. Commun. **1988,** 1045.
- **(5)** Engelhardt. L. M.; Junk, **P.** C.; Raston, C. L.; White, A. H. J. Chem. *Soc.,* Chem. Commun. **1988,** 1500.
- (6) McCormick, M. J.; Sockwell, **S.** C.; Davies, C. E. H.; Hanusa, T. P.; Huffman, J. C. Organometallics **1989,** 8, 2044.
- (7) Andersen, R. A.; **Blom,** R.; Burns, C. J.; Volden, H. V. *J.* Chem. Soc., Chem. Commun. **1987,** 768.
- (8) Burns, C. J.; Andersen, R. **A.** *J.* Organomer. Chem. **1987,** *325,* 31. (9) McCormick, M. **J.;** Williams, R. A,; Levine. L. J.; Hanusa, T. P.
- Polyhedron 1988, 7, 725.
(10) Hutchings, D. S., Junk, P. C.; Patalinghug, W. C.; Raston, C. J.; White,
A. H. J. Chem. Soc., Chem. Commun. 1989, 973.
(11) Hammel, A.; Schwarz, W.; Weidhlein, J. J. Organomet. Chem. 1989,
- *378,* 347.
- (12) Khattar, R.; Knobler, C. B.; Hawthorne, M. F. *J.* Am. Chem. Soc., in press.
- (13) This dianion has been generated by the 2-electron reduction of 1,2- $C_2B_{10}H_{12}$ and has been formulated as Na₂[nido-7,9-C₂B₁₀H₁₂] with carbon atoms occupying the 7- and 9-positions. This assignment is further supported by the fact that the $[nido-C_2B_{10}H_{13}]^-$ monoanion (kinetic isomer) and all of the metallacarboranes derived from this dianion contain carbon atoms in these positions.

Figure 2. Closer view of the metal to carborane interactions in the polymeric complex $[close-1,1,1-(MeCN)₃-1,2,4-SrC₂B₁₀H₁₂]_n (2). All$ terminal hydrogen atoms have been omitted for clarity. Selected interatomic distances (Å): Sr(1)-N(1A), 2.630 (9) [2.688 (9)]; Sr(1)-N-**(2A),** 2.777 **(IO)** [2.703 (9)]; Sr(l)-N(3A), 2.682 (8) [2.695 (9)]; **Sr-** (l)-C(2)*, 2.997 **(IO)** [3.064 (IO)]; Sr(l)-B(3)*, 2.873 **(IO)** [2.948 (13)]; Sr(l)-C(4)*, 3.176 **(IO)** [3.142 (ll)]; Sr(l)-B(5)*, 3.129 **(IO)** [3.032 (13)]; Sr(l)-B(6)*, 2.909 **(IO)** [2.826 (IO)]; Sr(l)-B(7)*, 3.082 **(IO)** [3.061 (13)]; C(2)-B(3), 1.716 (14) [1.731 (14)]; C(2)-B(7), 1.791 (14) [1.821 (14)]; C(4)-B(3), 1.695 (14) [1.604 (13)]; C(4)-B(5), 1.609 (14) [1.624 (15)]; B(5)-B(11), 2.003 (15) [1.99 (2)]; B(5)-B(10), 1.806 (16) [1.83 (2)]; C(2)-B(8), 1.732 (15) [1.730 (16)]; B(3)-B(8), 1.787 (15) [1.781 (16)]; C(2)-B(12), 1.731 (14) [1.719 (IS)]; B(7)-B(12), 1.775 **(15)** [I304 (16)]; Sr(l)-H(2), 2.62 (9) [2.70 (8)]; **Sr(l)-H(l2),** 2.56 (9) [2.87 (9)]; C(2)-H(2), 1.12 (9) [1.43 (9)]; B(12)-H(12), 0.88 (9) [0.94 (9)]; Sr(l)-C(2), 3.153 **(IO)** [3.166 (IO)]. Asterisks denote atoms of the **open** hexagonal face of the carborane fragment that interacts directly with $Sr(1)$. Distances in brackets are those of a second molecule. Note: Lines are for the purpose of orientation only and do not imply covalent bonding.

produces colorless needlelike crystals: the X-ray study showed it to have the composition $Sr(C_2B_{10}H_{12})(MeCN)_3$ (2).¹⁴ Complex **2** reverts to **1** in the presence of THF. On the basis of these

⁽¹⁴⁾ Data for **1:** IR (Nujol mull, NaCl) ν_{B-H} 2524 s, 2472 vs, br cm⁻¹, ν_{B-H+E} 2390 m cm⁻¹ (E = B or C), ν_{THF} 1032 s, 884 m cm⁻¹. Data for **2:** IR (Nujol mull, NaCl) $\nu_{\text{B-H}}$ 2512 s, br, 2429 s, br cm⁻¹, ν_{MeCN} 2300 m, 2265 s cm⁻¹; ¹H NMR (CD₃CN, 20 °C, ppm) 3.99 (s, br, carboranyl C-H);
¹¹B NMR (in MeCN, 20 °C, chemical shifts referenced to externa BF₃·OEt₂, peaks upfield of the reference are designated as negative, areas given in parentheses) 2.6 (4), $J_{BH} = 111$ Hz, -7.2 (3), $J_{BH} =$ 143 Hz, -18.1 (3), $^{1}J_{BH} = 129$ Hz.